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PrefaceI
The purpose of this study was to analysis the orbital

dynamics of a space shuttle external tank taken into low

Earth orbit. This was not a feasibility study, however the

results obtained from this research would be very useful to

someone contemplating the viability of using external tanks

on orbit. In performing the research and writing this

thesis I have had a great deal of help from others. I am

deeply indebted to my faculty advisor, Capt Rodney D. Bain.

I also wish to thank my classmates for their support and

encouragement, without which I would not have been able to

complete this study.
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I THE PROBLEM

One of the main goals of the Space Transportation

System (STS) is to reduce the cost of delivering payloads

into orbit. Reuse of the solid rocket boosters and orbiter

itself is a major factor in achieving this goal, but the

original Space Shuttle designers elected to make the exter-

nal tank (ET) an expendable element of the STS. A typical

launch will retain the ET for the space shuttle main engine

(SSME) burn of over eight minutes and then jettison it for a

controlled entry into the Indian or Pacific Ocean. However,

this component of the STS does not have to go to waste.

When cast off, the external tank has 98% of the energy

needed to insert it into orbit. A launch trajectory, called

the direct injection, could be flown whereby the space

shuttle main engines would boost the orbiter with its

attached external tank into a standard shuttle orbit. See

Figure 1. The use of this more efficient flight path would

not only allow the tank to be taken into orbit, but an addi-

tional 2000 lbs of payload could be carried. The orbiter

would then leave the ET and continue on its scheduled

mission. In other words, its costs nothing to deliver a

53,000 lb, factory tested, aluminium pressure vessel into

low Earth orbit (8:1-1).

1-1



ALTERNATE TRAJECTORY

ORBITER WITH ET & RESIDUALS
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Fig. 1 Direct Insertion Launch Trajectory

The external tank is the main structural element of

the STS, supporting both the orbiter and the two solid

rocket boosters. The tank consists of three main compo-

nents: the liquid oxygen tank, the intertank, and the liquid

hydrogen tank. See Figure 2. These ET components are

manufactured from an aluminum alloy, and after assembly the

unit is coated with a 1 to 1-1/2 inch layer of spray on foam

insulation (8:II-1).

Taking the ET into orbit presents several opportunities

and capabilities. Reference 8 describes many on-orbit

applications for an ET which have
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Fig. 2 Cut Away View of an STS External Tank

been proposed by government and private industry groups.

The capabilities provided by the ET not available elsewhere

include large relatively inexpensive masses of aluminium (in

excess of 53,000 lb per tank) in earth orbit, large factory

tested pressure vessels, and large enclosed volumes ready

for use in orbital storage until needed. The tank could be

disassembled in orbit and used as parts for a large space

structures. These structures could be used to build the

basis for many d..fferent types of space facilities, such as

a space station, or an on orbit fuel station, or even as

part of an interplanetary spacecraft. It is also possible
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to melt the tank aluminum for on-orbit manufacturing uses.

Additionally, each ET would still contain an average of

15,000 lb of residual cryogenic fuel and oxidizer when it

arrives in orbit. This is due to reserve, pressurization,

and ullage requirements (8:11-5). This liquid hydrogen and

liquid oxygen can be scavenged from the tank after launch

for a variety of uses on-orbit. Both the liquid hydrogen

tank and the liquid oxygen tank are capable of on-orbit

storage of cryogenic fuels and other volatiles. The poten-

tial uses of the ET connected to a tether range from momen-

tum exchange with the shuttle to electrical power generation

with a conducting tether. However, prior to utilizing an

external tank in space, a major obstacle must be addressed;

how to prevent it from decaying out of orbit prematurely.

At the present time, the primary obstacle to the

proposed use of the ET in low Earth orbit (LEO) is orbital

lifetime. All objects in LEO experience atmospheric drag.

Work is required to push the air molecules out of the way

which reduces the kinetic energy of a satellite. This

effect causes the orbit to shrink where the orbital velocity

requirement is greater; around the perigee point. This

increase in speed combined with the higher density of the

lower atmosphere results in an increased drag force. And

the cycle continues until the satellite completely decays

(27:296). This phenomena was observed with the Skylab space
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station. Skylab's orbit decayed due to increased solar

activity that adversely affected the density of the atmo-

sphere. The additional drag on the spacecraft led to its

earlier than planned re-entry (26:39). An orbiting external

tank could suffer the same fate. An unexpected re-entry

would defeat the purpose for bringing the ET into space and

produce the possibility of raining large pieces of a disin-

tegrating tank over populated areas. On the shuttle mission

that launched the Hubble Space Telescope, the re-entry of

the ET was observed by the USAF Maui Optical Station in

Hawaii. The tank exploded and broke up at high altitude,

however several large pieces of it, weighing several

hundred pounds survived re-entry and hit the ocean (3:52).

If this would have happened over land the results could have

been disastrous. Presently, the launch trajectory of the

STS and the jettisoning of the ET are planned to provide a

"controlled" re-entry of the ET during the first orbit. To

prevent an ET that was taken into orbit from re-entering

prematurely some form of active propulsion utilizing small

thrusters (or an alternate form of orbital maintenance such

as momentum transfers involving tethers) is required. But

the first tanks taken into orbit may not be equipped with

small thrusters to accomplish this task. And possibly, ET

end-users would make use of the tank before it began a

final, blazing plunge through the lower layers of the atmo-
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sphere.

Therefore parking orbits must be found for the ET that

will prevent it from early re-entry. The thrust of this

study is to determine parking orbits for a single external

tank, awaiting its future purpose, that are within the oper-

ating capability of the STS . For this investigation, these

parking orbits will be defined by two criteria. First, the

time horizon chosen is 90 days. This three month window is

selected to represent the amount of time allowed for the ET

to remain in its parking orbit before the end-users would

make use of it. After which, (1) the tank could be disas-

sembled, (2) it could be boosted to a higher orbit by a

space tug or some sort of "strap on" propulsion system, (3)

it could be incorporated into some type of structure that

has an orbital maintenance capability such as a space sta-

tion. Secondly, the maximum tolerable altitude loss by the

ET over the 90 day period would be 25 kilometers. Any

initial orbit that loses more than 25 km in perigee altitude

would be considered unacceptable. These two assumptions

produce a platform from which to answer the primary ques-

tion: What are the lowest initial orbits for deploying the

external tank sufficient to meet the parking orbit

requirements?

To accomplish this the equations of motion (EOM) of an

ET in low Earth orbit are numerically integrated for a given

1-6
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set of initial orbital elements. Typical shuttle orbit

3 parameters are used in the search for minimum parking

orbits. Finally, various aspects of the orbit, and Earth's

gravitational field and atmosphere are investigated to

3 determine their relationship with orbital decay. Chapter IV

details the results of this exar-,aation of an external tank

3in low Earth orbit.

I
I
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U I I MATHEMATICAL MODEL

The mathematical model for this problem assumes both

I bodies closely follow paths according to two-body motion,

with only minor deviations due to small perturbing forces.

Additionally, the mass of the primary (Earth) will be

3 assumed to be much greater than the mass of the secondary

body (shuttle tank). Thiis implies that the center of mass

3 of the primary may be used as the center of mass for the

system and that the effect of the secondary on the motion of

the primary will be negligible. Now, the effects of a non-

spherical Earth and other perturbing forces will be

examined.

* A body orbiting a spherical planet of homogeneous

structure and with no outside environmental listurbances,

would continue forever in an idealized Keplerian orbit; its

3 orbital elements remaining constant at their initial values.

In real celestial systems however, there are several inter-

3 fering influences capable of perturbing the satellite's

motion. They are:

3 1) the irregular shape and variable composition of

the primary

U 2) the atmosphere of the primary
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3) the magnetic field of the primary

* 4) solar radiation pressure

5) the gravitational fields of other nearby bodies

I The effect a perturbing force has on a specific

orbital element does not directly correspond to its magni-

tude. For instance, the Earth's gravitational attraction is

on the order of one dyne, but because it is a conservative

Iforce, produces no appreciable long term perturbation upon a
satellite's semi-major axis. However, it does produce both

long and short term periodic variations in several of the

orbital elements. Conversely, the atmospheric drag (on the

order of 10-5 dyne) acting on a low orbit satellite causes a

I noticeable secular decrease in the semi-major axis (9:973).

3 In low Earth Orbit the two principal perturbations

experienced by a body are caused by the irregularity of the

3 Earth's gravity field and atmospheric drag. Third body

effects (from the Sun and Moon) have a negligible effect on

the orbital decay problem and will not be considered in this

study (20:52). Solar radiation can produce marked effects

on a satellites orbit if the density of the satellite is

small, as in the case of balloon satellites such as Echo I

(24:216). However, the density of an external tank is large

enough to disregard this perturbing force. If the satellite

has metal in its construction the Earth's magnetic field
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induces eddy currents in the satellite and a slight retarda-

tion acts on the satellite. The changes in the orbit due to

this are very small compared to the effects of other

perturbations (24:216). Because of the magnetic fields

3 small effect and the short time span to be studied this

effect will be also neglected. The next two sections will

develop expressions for the two main perturbations which are

to be considered in this study (i.e. gravity field irregula-

rities and atmospheric drag).

Gravity Model

The Earth's gravitational field is the dominant

controller of an low Earth orbiting satellite. However,

as experienced by a satellite in low orbit, Earth's grav-

U itational field does not exhibit spherical symmetry. The

* rotation of the earth causes it to bulge at the equator

by almost 20 km, and irregular placement of continental

land masses which are separated by ocean basins all con-

tribute to Earth's deviation from a Newtonian point mass

and produce a non-spherical shape to Earth's

gravitational field (24:204). As a satellite orbits the

globe it encounters a variable force of gravity leading

to changes in its orbital parameters. A formulation is

needed to model this perturbing effect.
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The attractive force between two bodies of mass M

and m, separated by distance r, is governed by Newton's

U universal law of gravity:

MMI F=G 2Ir

Where G is the universal gravitational constant. Combin-

ing Eq (1) with Newton's second law

I F-ma (2)I
provides the acceleration of body m with respect to the

I two-body center of mass (which, as previously stated con-

veniently coincides with the center of mass of the pri-

mary):

GM
GM (3)

* r2

Instead of working with an acceleration in determining

the gravitational disturbance, it is simpler to convert

the acceleration to a vector and express this vector as a

potential function (15:1).
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An equivalent vector is obtained by representing

the acceleration as a gradient of a scalar, V, defined as

the potential (per unit mass):

a-VV (4)

where

* GM
r

Using a Cartesian coordinate system, with its' origin at

the center of mass of M, the acceleration can be repre-

sented as

V- v.V +---GMx -GM -GMrk (6)

e~x LI Y 3z r 3 r3

The second derivative of the potential is then

a 2 V _ ( I 3 i)-- - -r--jrJ (7)

Combining the three ccmponent second derivatives gives

the Laplacian

SV2 V _ 2 V ) 2V a 2V

ax2 +y 2 a z 2  (8)

I or
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Poiso -7;G;: 3(x2+2+ Z2) (9)~
In Poisson's fundamental partial differential equa-

tion for gravitational fields (6:277,279):

1 V 2 V - -4nGp (10)

I
where p is defined as the density of M. For a satellite

I orbit outside the body M, the density equals zero which

leads to Laplace's equation:

VIV-O (I1)

Since the body M (Earth, in this case) is basically

l spherical in shape, transforming Egs (7) and (9) into

spherical coordinates will aid in the derivation. The

result of this transformation is

IV2 a(r 2L4V)+ a (C V)+ I (,32V)o_0 (2
r2 VTV Cos 2t - cs-X2(2

where

I r radial distance from origin

0 = latitude

I x =longitude

2-6
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Any solution, V, to Eq (12) is referred to in literature

as a spherical harmonic. However, a closed form solution

does not exist for this type of expression. Instead, if

a solution of the following form is assumed (15:4):I
V - V (r., X) - R(r)4@()A.( ) (13)

Iit can be inserted into Eq (12), which causes the partial

derivatives to become total derivatives since each of the

functions R, *, and A are only functions of one variable.

Dividing this equation by ROA gives

lI d(r 2 dR )  I d4' I (dA)_0 (14)

"4r dr ~Cos 0 d A ___ 2 A'K2

Since the first term of Eq (14) is the only term that is

a function of r, it must be constant. Assuming this con-

stant is -1(1+1), the solution to R is

I
R - Ar'+ Br - ' i (15)I

where A and B are arbitrary constants. Substituting this

result back into Eq (14) and multiplying by coS 2 , the

term containing A can be separated from the other terms.

Letting the this term equal the constant -m 2 and solving

for X gives

2-7



I.
A - CcosmX+ Ssinmr (16)

where C and S are arbitrary constants. When separating

the * term from the potential the resulting equation is a

I type know as Legendres' Equation, and is solved by assum-

ing * is represented by a power series in ix. Where

I Ip-sino. The solution of this is called an Legendre

Associated Function (15:5).

P .(sin ) - cos b T, sin(L-- 2) (17)
t-0

where

T ,, 1)'(2- 2t)! (18)TL 2'1! (1 - 1)! (1 - mn- 2t)! %

k - intger part of 2) (19)
2

I Finally, any combination of Eq (15), (16), and (17) may

be multiplied together, so long as the values of 1 and m

match. Also, any combination of R(r)(4)A(X) may then be

added together. The result is

V - I PZP (sin )[C mcosmX Ssin mX] (20)

The constants Ci. and Si. characterize the mass distribu-

2-8I
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tion of body M and the terms 1 and m are the order and

degree of the potential. To represent a model of the

Earth's geopotential, Eq (20) can be expressed as

V R. P (sin)[CcosmX+ SsinmX] (21)r 1-o0 o r

By including the Earth's gravitational parameter p and

equatorial radius R.. Cim and Sim are redefined from Eq

(20) to make them dimensionless (6:284). When m = 0 Eq

(14) simplifies to

I - - (-!)PYw(sin.)CO (22)

The geopotential components of this equation are referred

to as zonal harmonics and are due to variations in merid-

i ian ellipticity. When m = 1, the components of equation

15 are called sectoral harmonics and are caused by

longitudinal variations in the shape of the Earth. Tes-

sera] harmonics are concerned with cases where m < 1.

(also for all m > 1, the associated Legendre function

i P,,sin equates to zero). Values of the potential coeffi-

1cients Cis and Si. for Earth were determined from

repeated observations of various satellite orbits. By

studying the long term perturbations, the coefficients of

the zonal harmonics have been found and the sectoral and

I
2-9
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tesseral harmonic coefficients were determined from anal-

ysis of short term orbit perturbations. These geopoten-

tial constants have been calculated through many orders

and degrees (6:271).

It is of interest to note that, when both 1 and m

equal zero, Eq (21) reduces to the basic potential for a

spherically symmetric Earth:

V = P-GM (23)r r

meaning Coo=1 and Soo=O. This study will use a model of

order 2 and a degree of zero for the Earth's potential.

Studies have shown the short term perturbations caused by

higher harmonics have little affect on the orbital decay

problem (6:285). Therefore, Eq (21) can be reduced to:

V-( 1+ r 2Pzo(sin)C 2 o (24)

Considering the second term in Eq (24), the part of

the potential due to the Earths oblateness, and trans-

forming this back to Cartesian coordinates, and then tak-

ing the gradient of this potential will give the

perturbing acceleration of the secondary body caused by

the equatorial bulge (17:3-3).
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VV 2 -aj,-atf+ay+a (25)

where

a.- (26)

ay- (-2JR) - 2) (27)

a, (IJ 2 R 2 5,3-z2 )(8

J 2
= -C 2 0 - 0.0010826271

Air Drag

As a body passes through the rarified regions of

the upper atmosphere it is subjected to an aerodynamic

force which perturbs its orbital motion. This force can

be separated into two quantities; the component opposite

the direction of motion called drag, and the component

perpendicular to the body's flight path. This second

quantity generally does not pass through the satellite's

center of mass and can subsequently be divided into a

lifting force and a turning moment about the center of

mass (see Figure (3a) ). For an uncontrolled satellite,

the turning moment will normally be a destabilizing one,

tending to make the satellite tumble end over end

(16:13). In this study, the ET will be placed in orbits

where another torque acting on the ET dominates over the

2-11



AERODYNAMC FORCES

Dragg

M om e ntM 

..
D a

a. b.

Fig. (3) Aerodynamic Forces on an ET

aerodynamic torque. This other torque, the gravity gra-

dient, prevents the ET from tumbling (see in the section

on surface area for a further explanation of the gravity

gradient). Since the gravity gradient holds the ET per-

pendicular to the relative wind (see Figure (3b) ) the

lift that would be generated by the ET would be

negligible and will be ignored in this analysis. This

leaves drag as the only aerodynamic force to consider in

the study of an ET in low Earth orbit.

In aerodynamics the conventional drag equation is

(16:12)

2-12



D -IpACV2 (29)

where

D = drag force

p = atmospheric density

Cd= drag coefficient

A = satellite area normal to the air flow

V = satellite velocity relative to the

atmosphere

This formulation of the drag equation can alternately be

expressed as a drag deceleration:

D I /2CdA V
-dra = - = pV 2 = BpV 2  (30)
m m

where the ballistic coefficient, B, is a convenient

method of combining the satellite parameters A, m, and Cd

into one term for parametric studies. The elements of

the drag equation will now be examined with respect to an

Earth orbiting spacecraft.

Atmospheric Density. The major property of the

Earth's atmosphere important to low orbit satellites is

its' density. Two basic equations play a role in deter-

2-13
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mining air density as a function of altitude. First, the

I perfect gas law relates the atmospheric properties of

pressure p, density p, and temperature T:

p-pRT (31)

!M
where

* R = universal gas constant

M = mean molecular weight of the atmosphere

* The second expression to consider is the hydrostatic

equation which relates the rate . change in pressure to

the increased weight c the supported atmosphere:

N dp - -pgdr (32)

I
where g = gravitational acceleration (29:4). Logarithmic

differentials of Eq (31) give

dp dp dT (33)

When combined with Eq (32) this produces

2-14
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Ip1(4
o __qM .. d - )dr (34)

i where j is the terms in the brackets of Eq (34) arid

represents the inverse of the scale height. Integrating

Eq (35) and substituting H for yields

Sp P (rro)} (36)

I where

I r = altitude

ro= reference altitude

3 p.- density at reference altitude

I The scale height is the vertical distance in whicn the

air density changes by a factor of exponential e. The

value of H is dependent on altitude, increasing slowly

with height.

Several different density profiles can be considered

i depending on assumptions on f3 (27:4-5):

1) Strictly exponential atmosphere: f3 is assumed

constant throughout the atmosphere.

2) Locally exponential atmosphere: 3 is constant

2-15
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over a small altitude window.

3) or - constant atmosphere: The dimensionless

quantity Or remains constant.

I 4) Isothermal atmosphere: The temperature is con-

sidered constant through an altitude interval so that

dT/dr = 0 and Or becomes (gM/R)T. For an inverse-square

3 gravitation field

leads to the quantity Pr2 being constant.

All four profiles use the density exponential function of

Eq (36). For the purposes of this study the second case,

the locally exponential atmosphere, will be utilized.

In actuality, the density in the upper regions of the

3atmosphere is an exceedingly variable quantity with solar
activity being the main cause of this irregularity.

Observations of the orbits of early satellites were used

in analyzing these atmospheric density fluctuations.

One basic air density difference exists between the

sunlit and nighttime sides of the Earth. This hump off

density, the diurnal bulge, occurs about two hours after

midday. The change in density between day and night is

small for altitudes of 250 km and below, however, above

2-16
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this altitude large variations can take place. For exam-

ple, at 600 km, the maximum daytime density is about 8

times greater than the nighttime minimum (16:18).

I Along with this daily density variation there are

four other solar influences. First, there exists an

irregular day to day deviation in density due to ephem-

eral solar disturbances such as short term flares. A

second density variation occurs with a 27 day cycle.

This effect is due to the axial rotation of the Sun with

respect to the Earth. Next, the properties of the atmo-

sphere also respond to the 10 to 11 year sunspot cycle.

Lastly, a seasonal oscillation in density appears with a

minimum occurring during July and January, and a maximum

appearing in October and April. These seasonal effects

are largely due to the Earth's orbit around the Sun. A

model of the atmosphere containing all of these effects,

3 called a dynamic atmosphere, would be very complex

(16:18-19).

I For perturbations caused by the Earth's atmosphere

this investigation uses a simple exponential density

model as expressed by Eq (36). Reference (22) is the

source of Earth's atmospheric density and scale height

values at various reference altitudes. This type of

atmosphere model is called the "static atmosphere."

Instead of modeling the changes in atmospheric density

2-17
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I caused by the Sun, it describes "average" atmospheric

* properties which represent a mean value of the diurnal

bulge, seasonal, and other solar caused variations

I detailed above. This model is then time independent and

only depends on altitude.

The greatest limitation in using this atmospheric

model is in the assumption of spherical symmetry. As

expressed, the air density is only a function of the

I radial distance from the center of the Earth. However,

the Earth is an oblate spheroid and hence produces a lat-

itude effect to the atmospheric properties. Given the

3 ellipticity, E, of the Earth an approximate geodetic

altitude, hg, may be calculated byI
hg r- (38)_,--E2COS2

3 where 6 is the geocentric latitude and R is the equatorial

radius of the Earth. To obtain the true geodetic alti-

* tude requires the solution of a fourth order polynomial.

However, this approximate geodetic altitude is quite

U adequate in evaluating density of the atmosphere above an

elliptical Earth (17:3-5). This atmospheric oblateness

and aforementioned solar activity cause the main distor-

tions from spherical symmetry. More complex models of

the atmosphere have been devised to account for these

I 2-18I
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variational effects. However in order to keep the model

simple (and thereby reduce computer time) the static

atmosphere is used.

ISatellite Velocity. The component V, in the atmo-

spheric drag equation represents the satellite's velocity

relative to the atmosphere. With va being the velocity

vector of the air and v the satellite's velocity vector

(both with respect to an Earth fixed coordinate frame)

V - u-v0  (39)

Assuming the atmosphere rotates with the Earth, then the

velocity of the atmosphere, at any given point, can be

found by taking the cross product

,- wxr (40)

wherew is the angular velocity vector (rotation rate) of

the Earth, and r is the position vector of the part of the

atmosphere whose velocity is being determined. In the

case of this study the position vector for the external

tank will be used. Using r in spherical coordinates

I - - rwcos (41)

2-19



U where 0 is the geocentric latitude. Squaring Eq (39)

yields

V 2 -Vu+V-2vucosy (42)

where y is the angle between v. and v. Examining triangle

SNL in Figure (4), the equation (determined from spheri-

cal trigonometry)

cosY*cos -cos (43)

where i is the inclination and yis the angle between V,

and the horizontal component vh of u, is obtained. For

small eccentricities, a satellite travels nearly horizon-

tal through the atmosphere. A very small error, less

than one percent, results if the angle y is taken as the

angle y" (16:23). Using this approximation and substitut-

ing Eq (41) into Eq (43) results in

u.cosy -r wcosi (44)

Substituting this result into Eq (42) produces

V 2 uz l -cosi ) r W (cor 2 - os (4S )

2-20



Further assumptions may be made to simplify this

expression. First, the r2w2 term can be neglected due to

r 2W 2 being three orders of magnitude less than V2, since

I ~ is of the same order as Earth's angular velocity. For

small eccentricities r and v remain relatively constant,

therefore these variables may be replaced by initial val-

ues ro and va. Furthermore, the constant io may replace

i due to the orbit's inclination changing very little

during the short time period considered by this study

(16:24). Eq (45) may then be recast as

F ( 2
V_V 2  I -i -WCos, (46)

e1 (46))

The atmospheric drag equation may now be written as

D- Ip2FCA (47)
2

where

F- - cost0  (48)

The quantity F represents the effect of atmospheric rota-

tion on the drag force. Assuming w is equal to Earth's

I rotation rate, F will normally lie between 0.9 and 1.1,

and although the effect of atmospheric rotation on drag
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is slight it is not inconsequential (16:25).

Coefficient of Drag. The drag coefficient, Cd, is an

important element in the aerodynamic drag equation.

While a more accurate value of the total aerodynamic

force may be determined using a differential equation it

is more convenient to use the drag coefficient in the

orbital analysis. When working with a coefficient of

drag several assumptions must be made concerning the
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atmospheric molecules (16:14-15):

1) The satellite is considered to be stationary

I with respect to the air molecules flowing past.

2) The molecules are assumed to impinge on the

satellite, be retained temporarily on its surface, and

3 then re-emitted.

3) the collisions between incident and re-emitted

Imolecules are neglected.
Several factors come into play in calculating the

drag coefficient. The first parameter is the flow regime

through which the satellite moves. This flow type is

determined by the Knudsen number, defined as the ratio of

mean free path of atmospheric molecules to the character-

istic linear dimension of the satellite. Two hundred

kilometers above the Earth the ordinary continuous flow

of conventional aerodynamics no longer applies because of

extremely low air density. This region is called free

molecular flow and has a Knudsen number of 10 or greater.

When a satellite is in this flow regime its' drag coeffi-

I cient is dependent on the molecular speed ratio. This is

the ratio of satellite speed to most probable molecular

speed. For altitudes below 700 km this speed ratio

always exceeds 5. This implies the random thermal motion

of the atmospheric molecules may be ignored (i.e. the
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flow is hyperthermal) (2:931).

Another factor is the mechanism of molecular

reflection. The energy exchange between the atmosphere

molecules and the satellite is dependent on the direction

of the reflected molecules and their speed. It is

assumed the air molecules impinging on the satellite's

l surface do not reflect specularly ,but instead attach

themselves to the outer layer of the surface for a period

l of time before being re-emitted. During this period the

molecules 'forget' their original direction of motion and

are re-emitted diffusely. This diffuse reflection is

strongly contir ent upon the nature of the satellite's

surface a .ts structure (2:931).

I The speed of the re-emitted molecules is determined

by their kinetic temperature. During the period of

attachment the molecules also 'forget' their original

temperatures. By how much they 'forget' is uncertain and

leads to the accommodation coefficient, defined as

I (16:16):

ITgT, (49)

1 where

Ti = original molecular temperature

Tr = re-emitted molecular temperature
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Ts = satellite surface temperature

theoretical values of the accommodation coefficient are

very difficult to determine. Many assumptions must be

made concerning the gas molecules and their interaction

with the satellite's outer surface. Low values of the

coefficient are assumed to be appropriate (2:931,934).

This implies higher drag coefficients. Reference 15,

assumes from "conflicting and rather unsatisfactory"

experimental results that the accommodation coefficient

is nearly 1.0, but admits this assumption may be wrong.

Reference 3 presents a graph of drag coefficients

versus accommodation coefficients for a circular cylinder

with its axis perpendicular to the direction of motion.

Hyperthermal free molecular flow and a Tm/Ti ratio of

0.006 are both assumed (2:939). See Figure (5). The

upper line is a plot of

Cd - 2(1 + rn/6) (50)
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where diffuse re-emission is assumed. The term r here

is a ratio of the speed of a re-emitted molecule, V,, to

the speed of an incident molecule, Vi, and is related to az

by

The ratio To/Tj is very small so r can be approximated by

r - [ I - a] 1/ (52)
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The last factor to consider in determining the drag

coefficient is the satellite's dynamics and orientation

to the atmospheric flow. For a cylinder tumbling end

over end

where

1 = cylinder length

d = cylinder diameter

This equation for Cd produces similar results for various

values of I/d (2:940). However, if a gravity gradient

attitude is used for the ET the drag coefficient may be

obtained from Equation (50). From this it was determined

that an external tank would have a drag coefficient of

2.4.

Satellite Area. The projected area normal to the

free molecular flow of Earth's upper atmosphere also

affects the drag force experienced by the satellite. The

size of this area depends upon the orientation of the

satellite as it orbits the Earth. Ideally, the ET should

have its smallest cross-section pointing into the air

flow, thereby minimizing drag. However, this attitude,

with the long axis of the ET almost parallel to the
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Earth's surface, is unstable and would require some form

* of attitude control system in order to be maintained.

Since only a simple uncontrolled ET is to be studied,

I only stable attitudes for an ET must be examined.

* Two main torques act on a vehicle in low Earth

orbit; a gravi..y gradient torque and an aerodynamic

torque. T gravity torque arises from the slightly dif-

ferent attraction of gravity across the vehicle. This

torque will tend to point the long axis of the vehicle

towards the center of the Earth. If the ET is released

from the orbiter in this attitude, with no initial angu-

lar momentum, it will remain in this configuration until

the aerodynamic forces become dominant. The aerodynamic

I torque will cause the ET to spin about its minor axis.

However, a satellite would not remain in these

constant area positions relative to the flow. The ET's

orbital dynamics may alter the size of the projected

area. Below 370 km aerodynamic torques dominate an ET's

dynamics while above ,55 km the gravity gradient torques

are the major influences. Between these altitudes both

space torques can interact to cause an unstable distur-

bance in the satellite's orientation (19:2200).

If a gravity gradient attitude is assumed for an

orbiting ET this would present a constant projected area

to the relative wind. If a tumbling attitude, caused by
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the aerodynamic torque, is assumed the projected area

would be constantly changing. However, the average value

of the projected area for a tumbling satellite would be

less than the constant value from the gravity gradient

attitude. Since the orbital altitudes of concern fall

within the "gray" area where neither torque clearly domi-

3 nates, a conservative approach will be taken. For the

purpose of this study it will be assumed that the ET

i maintains a gravity gradient attitude; the worst case.

Equation of Motion

The primary assumption in the mathematical model is

* that both bodies travel in two-body motion with only

minor deviations caused by perturbing forces. Therefore,

* the first step in setting up the equation of motion of

the secondary body is to derive the equation for a pure

two-body motion. The first assumption in the two-body

3 problem is that no other forces are acting on these

bodies (other than the gravitational attraction between

them). Next, it is assumed that these bodies are spheri-

cally symmetric, which enables the bodies to be treated

i as though their masses were concentrated at their

3 centers. The perturbing forces will account for the fact

that the Earth is not spherical.

3 Applying Newton's second law to the secondary body

(the external tank) yields

12-29
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mi = ZF (54)I
3 where r is the distance between the center of masses of

the two bodies, and EF is the summation of all forces

3 acting on the ET (in this case is only gravity). Substi-

tuting Newton's law of universal gravitation into Eq (54)

I results in

I _ _ _ kmr - _GMm(55)

3 simplifying

S3r - (56)

I
3 where . : GM. This is the equation of motion for an

idealized two-body system (24:69-70). The perturbations

3 must be added in to make the math model follow the actual

motion of the bodies. For the two-body problem with per-

turbations, the equation would be

I
I- - r ( )

i 0 !r~ p~rturbafttns (57)

I
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where a. are the perturbing accelerations. Substituting

* the results of the previous two sections yields

4 BPV2 (VQ + (58

* which is the final form of the equation of motion for

i this study.

Ii
I
I
I

I

I

i
I
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III METHOD OF IMPLDIETATION

To solve the external tank problem a special perturba-

tion technique was used. The simplest and most straight

forward of all perturbation methods is Cowell's method. In

* this method one simply writes the equations of motion for

the body being studied, including all the perturbations, and

3 then integrates it step by step numerically. To apply

Cowell's method, the equation of motion first have to be

Iseparated into three scalar equations, and then broken down
into a set of six first order differential equations.

Expressing these equations in rectangular coordinates:

k- V. (59)

9-VY (60)

i- V (61)

-V -, + a.--+ajzaag (62)
r

I VY + (63)
r3

z-V,-.r- +aJ 2 +ara (64)

where r-(x2.2y2+z2) ' 2 and aJ2 is from Eqs (26), (27), and

(28), and adag is from Eq (47). This set of coupled equa-

tions is then inserted into a numerical integrator.

The type of integrator used for this study was an
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m eighth order Runge-Kutta single step method with a variable

I

390
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3401 -...... ...............
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-- Time (Doys)

I

Fig. (6) Fluctuations in Perigee AltitudeI
step size. At each time step a set of Keplerian orbital

3 elements is calculated. Since perturbations have been

included in the EOM, the orbital elements will not remain

-- constant, but are functions of time. The orbit described by

-- these new elements is the two body orbit a satellite would

follow if all the perturbations were removed at that moment.

These orbital elements are called the "osculating" elements

(24:159). The instantaneous values of these elements are
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then used as a basis for calculating the satellite's orbit

parameters at the next time step. For the external tank

orbit study a two hour time step was employed which produced

12 orbit element calculations per day for the three month

* period.

The classical Keplerian elements (a,e,i,).w,M) are

used to define the initial starting conditions of the orbit-

ing external tank. The output of the numerical integration

I of the EOM is a time history of these elements. Since the

equations of motion are integrated as rectangular coordi-

nates, some form of transformation is needed to convert

3 Keplerian elements to rectangular coordinates, and to

convert rectangular coordinates back to Keplerian elements.

I Appendix 1 contains a complete description of the transfor-

3 mations used in this study.

The orbital elements for each time step must by

3 converted to the perigee radius, rp, by the expression

(24:77):I
rp-a(l-e) (65)

3 where a is the semi-major axis and e is the eccentricity.

Subtracting the radius of the Earth from rp gives the per-

I
3-3

I
I



I
I

igee altitude, which is the parameter needed to determine if

* the initial orbit fits the parking orbit criteria.

Figure (6) is a plot of the fluctuations in perigee

I

390
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W

360
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30 ....... ........................'o....o....n3 0 0, , , , , , , , , , , , , , i, ,, , , , ,,0 40 B0 10'"00

Time (DDys)

Fig (7) Fitting Curve to Perigee Fluctuations

altitude of an orbiting ET perturbed by both a gravity

field and atmospheric drag. These fluctuations do not lead

to a simple statement of the amount of altitude lost by the

ET over the 90 day period. However, a regression function

is used to perform a least squares fit to the data (see
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Figure (7)). The type of curve employed was a third degree

polynomial in time. It is therefore convenient to define

the loss in perigee altitude as:I
A P-at+bt2 +ct 3  (66)

where t is time in days; Ap is perigee loss in kilometers;

and a, b, and c are the polynomial coefficients generated by

the curve fitting algorithm.

Different initial orbits were examined by varying

their Keplerian elements, and then numerically integrating

the corresponding EOM to find the resulting loss in perigee

altitude after 90 days. During earlier orbit studies vari-

I ous values of the longitude of the ascending node, argument

of perigee, and mean anomaly were evaluated and found to

have no discernable effect on the 90 day altitude loss rate

3 (20:33). For this reason, these three elements are set to

zero for all initial orbits in this study. These three

elements only determine the position of the ET within the

orbit itself or with respect to the symmetrical axis of the

Earth. While, the semi-major axis and eccentricity deter-

mine the size and shape of the orbit, and the inclination

determines the orbits position with respect to the Earth's

equatorial bulge.

These latter three Keplerian elements are varied tc
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produce initial orbits in which to park the ET. To keep

Iwithin the operational capability of the STS the inclination

was limited to a minimum of 28 degrees (approximate latitude

Iof Kennedy Space Center) and a maximum of 63 degrees. Even

though the shuttle is limited to a maximum inclination in

the low fifties when taking off from the Cape, the limit was

increased to 63 degrees to determine if the "critical"

inclination would have an effect on the ET altitude loss.

I

1
I
I
I
I
I
I
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IV RESULTSI
A satellite in orbit around the Earth has six degree

of freedom system. Therefore, it takes a six dimensional

phase space to fully represent it. These different degrees

of freedom may be represented by different sets of coordi-

nates, such as Cartesian coordinates, the Keplerian orbital

elements, the Delaunnay elements, or equinoctal elements.

Each of these sets of coordinates have certain advantages,

however, for visualizing what an orbit looks like the

Keplerian elements are the best. Therefore, they will be

used to describe the orbits in this study.

The problem is that there is no way to graphically

represent a six dimensional phase space. Therefore a

restriction is placed on the number of degrees of freedom.

As stated previously, this study accomplished this by hold-

ing three of the elements equal to zero. Even though their

values would change once an orbit was integrated, their

initial values remained constant throughout the study. This

reduced the phase space for initial orbits to three dimen-

sions.

All of the orbits that lose 25 km in perigee altitude

were graphed using a rectangular coordinate system. Where

the axis are the semi-major axis, eccentricity, and
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SURFACE OF RARKING ORBITS

Fig. 8 Three Dimensional Plot of Orbits

inclination. A computer graphics program was used to derive

a surface out of the data points (see Figure (8)). All

orbits that are above this surface lose less than 25 km, and

all orbits below it lose more than 25 km. To analyze this

surface, the first step was to examine the effects of vary-

ing the eccentricity on the semi-major, while holding incli-

nation constant. Next, the effects on the semi-major of

varying the inclination, while holding eccentricity constant

was examined.
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Fig. 9 Graph of Parking Orbits for I=280

All pariking orbits that have an inclination vi 280

are plotted. Then a curve fitting algorithm runs a third

degree polynomial thru these points (see Figure (9)).

Examining the right side of the curve in Figure (9), shows

the eccentricity increasing as the semi-major axis

increases. The reason for this is that the larger values of

,occentricity cause the perigee point to dip deeper into the

atmosphere. The increased atmospheric density and the

larger velocity of the ET at perigee produces a greater drag
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Fig. 10 Contour Map of Parking Orbits

force which accelerates orbital decay. On the left side of

the curve, as the eccentricity increases the semi-major axis

decreases until it reaches a turning point and then it

starts increasing. As the perigee point gets lower (incre-

asing eccentricity) the apogee point increases in altitude.

Therefore, at the far left on the curve the increase in

apogee altitude (due to increasing eccentricity), and its

corresponding decrease in orbital speed and atmospheric den-

sity, offsets the increases caused by the lower perigee
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altitude. This continues up to the inflection point, and

then the increases in density and speed at perigee overcome

the apogee effects.

I The expression for an orbits energy

I
E- (67)

* 2a

* where E is the specific mechanical energy of a satellite in

orbit, shows as the se.Li--major axis decreases the energy of

I the or it also decreases. Therefore, if the ET's orbit has

3 the smallest possible semi-major axis it also minimizes its

orbital energy. A low energy orbit costs less to achieve.

5Therefore, this study concentrated on finding minimum energy

parking orbits. Fiilding the minimum of the curve in Figure

3 (9) was done by taking the derivative of the curve's equa-

tion and setting it equal to zero (the equation for this

curve and its minimum point are in Appendix C).

* To examine the effects of varying inclination on the

semi-major axis it is more convenient to look at a topo-

I graphical map of the data. Figure (10) shows the minimum

point for the curve in Figure (9) forms a trough when

expanded alone the inclination axis. If this trough were

I
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level all of the contour lines would be parallel. Howev-

er,the contour lines curve inward instead. This indicates

the trough is really a "valley", with the "downhill"

I

1 C) -

I~~~~~ ~~~ -~-T - ---------- T -----

2B 38 48 58

I rclinI tinc (degrees)

U

1 Fig. 11 Inclination and Eccentricity Plane

I
direction along the axis of increasing inclination. Unfor-

I tunately, it is not possible to precisely measure the slope

of the valley, or even tell if it is linear from the contour

map.

To find the characteristics of the "valley", the

surface was cut into cross sections of constant inclina-

4
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I tion. Figure (9) was the first of these cross sections.

3 Fourteen more cross sections were made at steps of 2.50 in

inclination. As before, the first derivative test is

3 applied to find the minimum points of these curves (Appendix

C contains all these equations and minimum points). A curve

was then run through these points. In the inclination and

3 eccentricity plane this curve is a straight line of almost

constant eccentricity (see Figure (11)). The equation for

3 this line is

Selo0= 7.8694-0.00329834i (68)I
where i is the inclination in degrees, and elooo is 1000

I times the eccentricity. Because of statistical errors in

the curve fitting algorithms (i.e. a "best fit" curve made

of points from other "best fit" curves), the slope of this

3 line is small enough to ignore, and eccentricity can be

assumed to be constant along the "bottom of the valley".

3 Next, the inclination and the semi-major axis plane

was examined. From the graph of the minimum points, it can

be seen that the semi-major axis decreases linearly with

3 increasing inclination (see Figure (12)). The equation for

this line is

I
I 4-7
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a- 6795.24-0.334833i (69)I
where a is the semi-major axis in kilometers, and i is the

inclination in degrees.

I
I

6786

I ~ 6754E

6782

° U6778

I 6776

i6 7 7 2 1 . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28 38 48 58UInclination (degrees)

Fig. (12) Inclination and Semi-major Axis Plane

The slope of this line is more than a kilometer decrease in

3 the semi-major axis for every three degree increase in

inclination. Therefore, to minimize the semi-major axis the

largest possible inclination should be used.

The reason the semi-major decreases with increasing
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inclination is due to the Earth's equatorial bulge. Not

only does the Earth bulge at the equator, but the atmosphere

also bulges. Therefore, when a satellite is over the equa-

tor it is experiencing a higher atmospheric density than it

3 would at a higher latitude with the same geocentric

altitude. This increase in density causes a linear increase

-- in the drag acting on an external tank. The longer an ET

has to stay in this equator bulge (i.e. low inclination

orbits) the more energy it requires (larger semi-major axis)

to meet the parking orbit criteria.

All initial orbits for this study had the argument of

3 perigee set equal to zero. Therefore the perigee point was

over the equator, where the atmospheric bulge is. Addition-

Ially, the Earth's equatorial bulge has a perturbing effect
3 on the argument of perigee, causing it to increase linearly

with time (see Figure (13)). This moves the perigee point

into the higher latitudes where the atmospheric density is

lower. For low inclinatio orbits the effects due to the

change in the argument of perigee average out over time.

However, this is not true near the critical inclination.
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* At the critical inclination the rate of change of the

argument of perigee is zero. This "locks" the perigee point

I. into its initial position. In this study the perigee point

would be over the equator, the worst possible location.

-- From the data obtained, the critical inclination does not

effect the external tank problem. However, if the argument

of perigee could vary instead of being held constant the

results would differ.
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V CONCLUSIONI

This study represents the dynamics of an STS external

tank in low Earth orbit. A scenario involving an ET parking

3 orbit was developed as a way to limit the scope of the prob-

lem. The gravity gradient attitude and the simple atmo-

3 sphere model were the major assumptions in this

investigation.

The major outcome of this study was the determination

3 of a set of initial orbits for the ET which met the parking

orbit criteria. In orbital phase space, a surface of these

3 orbits was constructed. An analysis of this surface discov-

ered an optimal parking orbit. In order to minimize orbital

I energy the semi-major axis must be minimized. This study

* found that parking orbits with an eccentricity equal to

0.00787 minimized energy and increasing the inclination

decreased the semi-major axis. Therefore, the optimal park-

ing orbit would have an eccentricity of 0.00787 and the

I highest possible inclination (for this study i...= 630).

The optimal eccentricity resulted from the differences

of orbital velocity and atmospheric density between apogee

and perigee. Higher inclination parking orbits require less

energy because the atmosphere bulges at the equator.

I Extrapolating this concept beyond an inclination of 63a, it

may be surmised that the optimal inclination would be 900.
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Here the ET would have the smallest fraction of its orbit in

the equatorial bulge. Unfortunately, the Vandenberg, CA

launch site will not be used for the STS, thus this orbit is

I not an option.

3] This study found the critical inclination did not

effect the parking orbits. Since the perigee point was set

3over the equator, it would remain there for all orbits with

a critical inclination. However, if the argument of perigee

I was set at 900, then the perigee point would be "locked"

3into the farthest point from the equatorial bulge. A fur-

ther study of the critical inclination is recommended.

Since this study determined an optimal eccentricity, the

eccentricity could be constant and the argue of perigee

could vary. The inclination could then range from below to

abovt. the critical inclination.

Another area of study could include different methods

of changing the external tank's ballistic coefficient (i.e.

intentionally tumbling it, thereby reducing its cross-

sectional area). Additionally, the results of this study

could be used in an analysis of the feasibility of taking

the ET into orbit. Questions which could be studied are (1)

is the advantage of higher inclinations offset by the

decrease of the component of the Earth's rotational velocity

in the direction of flight, (2) will placing the ET in a
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parking orbit detract from the STS's primary mission, (3)

would adding an attitude control system on the ET be worth-

while.

I
I
I
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I
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I
i
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APPENDIX A

I
Conversion Between Cartesian Coordinates

and Orbital Elements

-- The following algorithm is taken from Reference 19, page 102. Given the

six classical elements, a, e, i, 2. w, and M, one solves the Kepler's

equation to obtain the eccentric anomaly, E, and then computes the

following variables:

3 II = cos(fl)cos(w)-sin(f2)sin(w)cos(i)

ml = sin(fl)cos(w)* cos(f2)sin(wo)cos(i)

ni = sin(w)sin(i)

12 -cos(fL)sin(Aw) - sin(f2)cos(w)cos(i)

m2 --sin(f0)sin (w) + cos(O)cos(u)cos(i)

n2 = cos(w)sin(i)

Now the Cartesian coordinates and their associated derivatives can be

calculated by solving the following equations:
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x -allcos(E)+ bl 2sin(E)-aeI,

Iy -am, cos(E)+ bm 2 sin(E)-aem,

z -ancos(E)+ bn 2 sin(E)-aen,

-na [1- [bl 2 cos(E)-alsin(E)]

-- [bin c o s ( E ) - am I sin(E)]r

a= -[bn 2 cos(E)- an, sin(E)]

r

I where r =1 x2+ y2 z

3n=ila 3

b- a e 2

The conversion from Cartesian elements to orbital elements uses

the non-singular formulation of Reference 2.I

3- r _(rxu)xv

a (2

r

r. rxv

Irxvl

I
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to,

-WYII w

+ wz

P2 +2

I" 2+p+q2{ 2pq
-2p

I 1- +p 2 +q2{1+7~2IIp

I

1 1 1-?i2 -h k2

(1 - k 21)X 1 - hkf3Y 1
cos(F) k+Ia/1 -h 2 -k 2

(1 -h 213)Y1 -htkI3Y
sin(F) =h

1a ] -h 2 -k 2

I K = F-ksin(F)e hcos(F)

~a, h, k, p, q, and K are called the equinoctal elements. Their

relationship with the classical elements are:

I
I

hA-

I

I e



a a

h e esin (w -LI)

k e cos(w -fl)

p =tan(i/2)sin(fl)

q =tan(i/2)cos(fl)

x -M-+fL1

From- the equinoctial elements, any classical elements and related

orbital information can be computed.
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APPENDIX B

Table of Data Used to Construct Initial Orbit Surfaces

I Column #1 Column #2

e i A e i A

32.052 50.5 6848.14 12.531 45.5 6783.14

30.980 50.5 6843.14 26.527 50.5 6823.14

29.979 50.5 6838.14 24.071 50.5 6813.14

28.830 50.5 6833.14 21.240 50.5 6803.14

27.680 50.5 6828.14 0.000 38 6792.14

25.300 50.5 6818.14 3.686 43 6783.14

22.767 50.5 6808.14 0.000 33 6794.64

19.785 50.5 6798.14 0.421 33 6794.00

17.959 50.5 6793.14 9.875 33 6785.14

30.884 35.5 6848.14 5.748 33 6785.14

29.811 35.5 6843.14 18.107 53 6793.14

28.736 35.5 6838.14 6.639 53 6778.14

27.659 35.5 6833.14 20.726 45.5 6803.14

I26.435 35.5 6828.14 3.686 45.5 6783.14

25.208 35.5 6823.14 14.005 53 6783.14

23.907 35.5 6818.14 2.211 53 6783.14

22.677 35.5 6813.14 0.000 53 6787.14

21.298 35.5 6808.14 0.442 53 6786.14

19.697 35.5 6803.14 1.032 53 6785.14

17.946 35.5 6798.14 1.621 53 6784.14

I 15.898 35.5 6793.14 15.763 48 6788.14

13.258 35.5 6788.14 0.000 48 6788.14

7.371 35.5 6783.14 11.284 53 6779.64

2.210 35.5 6788.14 2.948 48 6783.14

I 29.446 30.5 6843.14 0.589 48 6787.14

25.995 30.5 6828.14 1.179 48 6786.14

I23.467 30.5 6818.14 6.786 48 6779.14
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22.236 30.5 6813.14 5.457 48 6780.14

20.784 30.5 6808.14 4.129 48 6781.14

19.109 30.5 6803.14 5.290 53 6779.00

3.388 30.5 6788.14 9.144 48 6780.14

1.104 30.5 6793.14 7.078 43 6781.14

24.640 43 6818.14 5.013 43 6782.14

23.337 43 6813.14 0.000 43 6790.64

18.387 38 6798.14 8.478 38 6782.14

2.210 38 6788.14 7.298 38 6782.64

31.833 48 6848.14 0.000 40.5 6791.14

29.760 48 6838.14 7.005 40.5 6780 64

27.460 48 6828.14 8.994 40.5 6782.14

25.080 48 6818.14 0.000 45.5 6790.14

23.924 48 6813.14 6.932 45.5 6780.14

22.547 48 6808.14 4.866 45.5 6781.14

17.665 48 6793.14 0.000 35.5 6793.14

32.272 53 6848.14 7.664 30.5 6785.14

31.126 53 6843.14 0.000 30.5 6795.14

28.976 53 6833.14 4.716 35.5 6785.14

27.972 53 6828.14 11.348 35.5 6785.14

25.520 53 6818.14 32.564 58 6848.14

22.914 53 6808.14 30.418 58 6838.14

31.608 53 6803.14 25.813 58 6818.14

20.005 53 6798.14 24.511 58 6813.14

16.205 53 6788.14 21.902 58 6803.14

30.834 48 6843.14 14.742 58 6783.14

28.684 48 6833.14 32.418 55.5 6848.14

26.381 48 6823.14 31.418 55.5 6843.14

21.166 48 6803.14 29.269 55.5 6833.14

19.564 48 6798.14 28.119 55.5 6828.14

0.736 33 6793.14 26.967 55.5 6823.14

2.946 33 6788.14 23.208 55.5 6808.14
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16.340 38 6793.14 21.755 55.5 6803.14

i 13.848 38 6788.14 20.300 55.5 6798.14

7.518 33 6784.14 20.594 60.5 6798.14

31.541 43 6848.14 18.695 55.5 6793.14

30.395 43 6843.14 14.595 55.5 6783.14

29.248 43 6838.14 6.346 55.5 6776.14

28.245 43 6833.14 16.868 55.5 6788.14

27.094 43 6828.14 11.508 55.5 6778.14

25.941 43 6823.14 9.739 55.5 6777.14

22.032 43 6808.14 5.755 55.5 6777.14

20.579 43 6803.14 4.426 55.5 6778.14

18.829 43 6798.14 0.000 55.5 6786.64

16.929 43 6793.14 1.474 55.5 6783.14

9.583 38 6783.14 16.794 58 6788.14

29.665 33 6843.14 11.803 58 6778.14

17.505 33 6798.14 10.476 58 6777.14

1 15.457 33 6793.14 5.017 58 6777.14

12.669 33 6788.14 6.346 58 6776.14

19.991 38 6803.14 4.131 58 6778.14

30.665 33 6848.14 0.000 58 6785.64

28.517 33 6838.14 1.327 58 6783.14

27.440 33 6833.14 25.740 55.5 6818.14

23.687 33 6818.14 24.511 55.5 6813.141 22.457 33 6813.14 31.491 58 6843.14

19.403 33 6803.14 27.114 58 6823.14

31.103 38 6848.14 30.308 55.5 6838.14

28.955 38 6838.14 28.229 58 6828.14

1 27.806 38 6833.14 23.281 58 6808.14

26.654 38 6828.14 29.342 58 6833.14

21.518 38 6808.14 30.418 60.5 6838.14

30.030 38 6843.14 29.269 60.5 6833.14
1 8.401 28 6785.14 28.192 60.5 6828.14
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26.215 33 6828.14 27.040 60.5 6823.14

24.915 33 6823.14 24.658 60.5 6813.14

21.004 33 6808.14 23.428 60.5 6808.14

25.501 38 6823.14 22.049 60.5 6803.14

24.200 38 6818.14 31.491 60.5 6843.14

22.897 38 6813.14 18.916 60.5 6793.14

23.320 28 6818.14 17.162 60.5 6788.14

11.785 28 6788.14 15.185 60.5 6783.14

1.472 28 6793.14 6.199 60.5 6775.14

22.016 28 6813.14 4.870 60.5 6776.14

20.564 28 6808.14 4.279 60.5 6777.14

4.419 28 6788.14 12.098 60.5 6778.14

30.300 28 6848.14 0.000 60.5 6785.14

28.151 28 6838.14 2.065 60.5 6780.14

18.815 28 6803.14 3.393 60.5 6778.14

29.226 28 6843.14 1.179 60.5 6783.14

24.549 28 6823.14 32.418 63 6848.14

11.794 43 6783.14 30.418 63 6838.141 5.160 38 6783.14 28.265 63 6828.14

13.268 48 6783.14 31.418 63 6843.14

30.519 30.5 6848.14 25.960 63 6818.14

i 28.370 30.5 6838.14 27.114 63 6823.14
27.220 30.5 6833.14 22.196 63 6803.14

24.769 30.5 6823.14 24.732 63 6813.14

17.358 30.5 6798.14 23.538 63 6808.141 12.227 30.5 6788.14 17.346 63 6788.14

30.125 53 6838.14 15.480 63 6783.14

i 26.674 53 6823.14 19.211 63 6793.14

31.322 40.5 6848.14 6.126 63 6774.645 29.101 40.5 6838.14 20.741 63 6798.14

28.025 40.5 6833.14 4.132 63 6776.14

26.874 40.5 6828.14 12.983 63 6778.14
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25.721 40.5 6823.14 3.541 63 6777.14

24.420 40.5 6818.14 11.511 63 6776.14

23.117 40.5 6813.14 5.461 63 6775.14

3 21.739 40.5 6808.14 2.950 63 6778.14

20.285 40.5 6803.14 12.321 63 6777.14

3 18.608 40.5 6798.14 10.627 63 6775.14

16.634 40.5 6793.14 2.508 63 6779.14

14.290 40.5 6788.14 1.917 63 6780.14

10.762 40.5 6783.14 1.475 63 6781.14

1.473 40.5 6788.14 0.000 63 6784.14

31.687 45.5 6848.14 1.180 63 6782.14

30.615 45.5 6843.14 0.737 63 6783.14

29.540 45.5 6838.14 5.600 30.5 6786.14

28.464 45.5 6833.14 9.729 35.5 6784.14

3 27.240 45.5 6828.14 5.306 35.5 6784.14

24.860 45.5 6818.14 10.315 30.5 6786.14

3 23.631 45.5 6813.14 3.684 35.5 6786.14

22.326 45.5 6808.14 3.094 35.5 6787.14

19.196 45.5 6798.14 5.750 40.5 6782.14

17.297 45.5 6793.14 10.765 45.5 6781.14

15.174 45.5 6788.14 11.943 45.5 6782.14

IB-_
I
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APPIDIX C

Equations for Cross Sections of Constant Inclinations

I = 28o
a - -0.00186798e"0.222988e -3.02999e+ 6797.23

I = 30.50
a - -0.00157397e 3 + 0.194479e 2 -2.74247e+ 6795.48

I = 339
a - -0.00166276e 3 +0.198598e 2 - 2.79726e + 6794.93

I = 35.5o
a - -0.00150906e 3 + 0.190148e 2 - 2.65605e + 6793.28

I = 380

a - -0.00157S5803 + 0.193635e2 - 2.70734e+ 6792.48

I = 40.50
a - -0.00158724e 3 +0.192857e 2 -2.66585e+6791.3

I = 43D
a - -0.00149035e 3 +0.188115e 2 - 2.61384e+ 6790.53

I = 45.5o3a - -0.00166111e 3 +0.198007e 2 -2.78083e+6790.32

I = 480
a - -0.00130136e 3 +O.179296e2 -2.51682e+6788.61

I = 53P3a - -O.00139434e3 +0.183106e2 -2.5692e+ 6787.54

I = 55.50
a - -0.001721172e 3 + .200656e2 -2.80602e 6786.73

I = 580
a - -0.00168992e3 0.197474e 2 - 2.73129e+ 6786.02

I = 60.503 a - -0.0017882e 3 + 0.204661 e2- 2.83722e+ 6785.48

I C-1

I



I
I _

1 630u a - -0.00177436e 3 
_ 0.206733e2 - 2.89023e + 6784.89

I Coordinates for Minimum Points

Inclination Eccentricity Semi-major Axis

28 7.9905 6785.61

3 30.5 7.7879 6785.18

33 7.8082 6784.41

I 35.5 7.6877 6783.41

38 7.7178 6782.40

I 40.5 7.6302 6781.48

43 7.6414 6780.88

I 45.5 7.5577 6779.89

48 7.6569 6779.27

53 7.6913 6777.98

55.5 7.7689 6776.23
58 7.6709 6775.93
60.5 7.7107 6774.95

63 7.7669 6774.08I
I
I
I
I
I
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